A review on in-vivo animal models for articular cartilage regeneration: osteoarthritis defects

Authors

  • Davood Zarini
  • Sina Mojaverrostami
  • Farzaneh Kianian
  • Elahe Entekhabi
  • Masoumeh Haghbin Nazarpak

DOI:

https://doi.org/10.22034/JATE.2020.39

Keywords:

Articular cartilage; Animal models; Osteoarthritis

Abstract

Reconstruction of articular cartilage degenerative diseases such as osteoarthritis is one of the most important challenges in musculoskeletal medicine. So far, a lot of research has been done on the repair of damaged articular cartilage in vivo. The study of in vivo animal models is essential to evaluate cartilage tissue engineering techniques. In this review, we study the articular cartilage structure and osteoarthritis disease features. Also, animal species that have been used in various studies as a model of articular cartilage damage and the advantages and disadvantages of any species models were studied.

References

[1] Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports health. 2009;1:461-8.
[2] Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clinics in sports medicine. 2017;36:413-25.
[3] Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering. European cells & materials. 2017;33:59.
[4] Decker RS, Koyama E, Pacifici M. Articular cartilage: structural and developmental intricacies and questions. Current osteoporosis reports. 2015;13:407-14.
[5] Ruggiero L, Zimmerman BK, Park M, Han L, Wang L, Burris DL, et al. Roles of the fibrous superficial zone in the mechanical behavior of TMJ condylar cartilage. Annals of biomedical engineering. 2015;43:2652-62.
[6] Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell and tissue research. 2017;370:53-70.
[7] Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomaterials science. 2016;4:734-67.
[8] López-Ruiz E, Jiménez G, García MÁ, Antich C, Boulaiz H, Marchal JA, et al. Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what’s new? Expert opinion on therapeutic patents. 2016;26:877-90.
[9] Gilbert SJ, Blain EJ. Cartilage mechanobiology: how chondrocytes respond to mechanical load. Mechanobiology in Health and Disease: Elsevier; 2018. p. 99-126.
[10] Armiento A, Stoddart M, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta biomaterialia. 2018;65:1-20.
[11] Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nature Reviews Rheumatology. 2015;11:21.
[12] Jahanban‐Esfahlan R, Mehrzadi S, Reiter RJ, Seidi K, Majidinia M, Baghi HB, et al. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. British journal of pharmacology. 2018;175:3230-8.
[13] Mora JC, Przkora R, Cruz-Almeida Y. Knee osteoarthritis: pathophysiology and current treatment modalities. Journal of pain research. 2018;11:2189.
[14] Glyn-Jones S, Palmer A, Agricola R, Price A, Vincent T, Weinans H, et al. Osteoarthritis. The Lancet. 2015;386:376-87.
[15] Maruotti N, Corrado A, Cantatore FP. Osteoblast role in osteoarthritis pathogenesis. Journal of cellular physiology. 2017;232:2957-63.
[16] Teichtahl AJ, Wluka AE, Proietto J, Cicuttini FM. Obesity and the female sex, risk factors for knee osteoarthritis that may be attributable to systemic or local leptin biosynthesis and its cellular effects. Medical hypotheses. 2005;65:312-5.
[17] Kloppenburg M, Berenbaum F. Osteoarthritis Year in Review 2019: Epidemiology and Therapy. Osteoarthritis and Cartilage. 2020.
[18] Aspden RM, Saunders F. Osteoarthritis as an organ disease: from the cradle to the grave. European cells & materials. 2019.
[19] Kashte S, Kadam S. Advances and Innovations and Impediments in Tissue Engineering and Regenerative Medicine. 2019.
[20] Grässel S, Aszodi A. Osteoarthritis and Cartilage Regeneration: Focus on Pathophysiology and Molecular Mechanisms. Multidisciplinary Digital Publishing Institute; 2019.
[21] Rutherford D, Gillis C, Hubley-Kozey C, Wong I, Stanish W, Mitchell M. Does the amount of effusion in the symptomatic knee explain altered function when compared to the contralateral knee during walking in individuals with osteoarthritis? Osteoarthritis and Cartilage. 2019;27:S129.
[22] Edith C, Céline D, Federica C, Olivier M, Sophie N, Zelda P, et al. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochemical pharmacology. 2019.
[23] Schmal H, Salzmann GM, Langenmair ER, Henkelmann R, Südkamp NP, Niemeyer P. Biochemical characterization of early osteoarthritis in the ankle. The Scientific World Journal. 2014;2014.
[24] Karsdal M, Christiansen C, Ladel C, Henriksen K, Kraus V, Bay-Jensen A. Osteoarthritis–a case for personalized health care? Osteoarthritis and Cartilage. 2014;22:7-16.
[25] Cope P, Ourradi K, Li Y, Sharif M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis and cartilage. 2019;27:230-9.
[26] Lampropoulou-Adamidou K, Lelovas P, Karadimas EV, Liakou C, Triantafillopoulos IK, Dontas I, et al. Useful animal models for the research of osteoarthritis. European Journal of Orthopaedic Surgery & Traumatology. 2014;24:263-71.
[27] McCoy AM. Animal models of osteoarthritis: comparisons and key considerations. Veterinary pathology. 2015;52:803-18.
[28] Gregory MH, Capito N, Kuroki K, Stoker AM, Cook JL, Sherman SL. A review of translational animal models for knee osteoarthritis. Arthritis. 2012;2012.
[29] Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nature Reviews Rheumatology. 2013;9:485.
[30] Samvelyan HJ, Hughes D, Stevens C, Staines KA. Models of Osteoarthritis: Relevance and New Insights. Calcified Tissue International. 2020:1-14.
[31] Christiansen BA, Anderson M, Lee CA, Williams J, Yik J, Haudenschild DR. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis and cartilage. 2012;20:773-82.
[32] Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338:917-21.
[33] Hunziker EB, Lippuner K, Keel M, Shintani N. An educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospects. Osteoarthritis and cartilage. 2015;23:334-50.
[34] Bannuru RR, Osani M, Vaysbrot E, Arden N, Bennell K, Bierma-Zeinstra S, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and cartilage. 2019;27:1578-89.
[35] Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2013;21:571-6.
[36] Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, et al. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Frontiers in Chemistry. 2020;8:53.
[37] Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A, et al. Progress in articular cartilage tissue engineering: a review on therapeutic cells and macromolecular scaffolds. Macromolecular Bioscience. 2020;20:1900278.
[38] Tran RT, Yang J, Ameer GA. Citrate-based biomaterials and their applications in regenerative engineering. Annual review of materials research. 2015;45:277-310.
[39] Malfait A-M, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis research & therapy. 2015;17:225.
[40] Poole R, Blake S, Buschmann M, Goldring S, Laverty S, Lockwood S, et al. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthritis and Cartilage. 2010;18:S10-S6.
[41] Ameye LG, Young MF. Animal models of osteoarthritis: lessons learned while seeking the ‘Holy Grail’. Current opinion in rheumatology. 2006;18:537-47.
[42] Van Den Berg WB. Lessons from animal models of osteoarthritis. Current opinion in rheumatology. 2001;13:452-6.
[43] Boyce MK, Trumble TN, Carlson CS, Groschen DM, Merritt KA, Brown MP. Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury. Osteoarthritis and cartilage. 2013;21:746-55.
[44] Olive J, D'ANJOU MA, Girard C, Laverty S, Theoret C. Imaging and histological features of central subchondral osteophytes in racehorses with metacarpophalangeal joint osteoarthritis. Equine veterinary journal. 2009;41:859-64.
[45] Brommer H, Laasanen M, Brama P, Van Weeren P, Helminen H, Jurvelin J. Functional consequences of cartilage degeneration in the equine metacarpophalangeal joint: quantitative assessment of cartilage stiffness. Equine veterinary journal. 2005;37:462-7.
[46] Reissis N. A novel method of articular cartilage repair: University of London; 2007.
[47] McDevitt C, Gilbertson E, Muir H. An experimental model of osteoarthritis; early morphological and biochemical changes. The Journal of bone and joint surgery British volume. 1977;59:24-35.
[48] Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instructional Course Lectures-American Academy of Orthopaedic Surgeons. 2005;54:465.
[49] Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. Journal of orthopaedic surgery and research. 2016;11:19.
[50] Sabatini M, Lesur C, Thomas M, Chomel A, Anract P, de Nanteuil G, et al. Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2005;52:171-80.
[51] Bendele A. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact. 2001;1:363-76.
[52] Quasnichka HL, Anderson‐MacKenzie JM, Tarlton JF, Sims TJ, Billingham ME, Bailey AJ. Cruciate ligament laxity and femoral intercondylar notch narrowing in early‐stage knee osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2005;52:3100-9.
[53] Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler P, Cowen T. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis and cartilage. 2005;13:614-22.
[54] Allen GM. Bats: biology, behavior, and folklore. Mineola, N.Y.: Dover Publications; 2004.
[55] Kumagai K, Suzuki S, Kanri Y, Matsubara R, Fujii K, Wake M, et al. Spontaneously developed osteoarthritis in the temporomandibular joint in STR/ort mice. Biomedical reports. 2015;3:453-6.
[56] Kyostio-Moore S, Nambiar B, Hutto E, Ewing PJ, Piraino S, Berthelette P, et al. STR/ort mice, a model for spontaneous osteoarthritis, exhibit elevated levels of both local and systemic inflammatory markers. Comparative medicine. 2011;61:346-55.
[57] Mason R, Chambers M, Flannelly J, Gaffen J, Dudhia J, Bayliss M. The STR/ort mouse and its use as a model of osteoarthritis. Osteoarthritis and cartilage. 2001;9:85-91.
[58] Miller RE, Lu Y, Tortorella MD, Malfait A-M. Genetically engineered mouse models reveal the importance of proteases as osteoarthritis drug targets. Current rheumatology reports. 2013;15:350.
[59] Puente XS, Sánchez LM, Overall CM, López-Otín C. Human and mouse proteases: a comparative genomic approach. Nature Reviews Genetics. 2003;4:544-58.
[60] Glasson SS. In vivo osteoarthritis target validation utilizing genetically-modified mice. Current drug targets. 2007;8:367-76.
[61] Guingamp C, Gegout‐Pottie P, Philippe L, Terlain B, Netter P, Gillet P. Mono‐iodoacetate‐induced experimental osteoarthritis. A dose‐response study of loss of mobility, morphology, and biochemistry. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 1997;40:1670-9.
[62] Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicologic pathology. 2003;31:619-24.
[63] Udo M, Muneta T, Tsuji K, Ozeki N, Nakagawa Y, Ohara T, et al. Monoiodoacetic acid induces arthritis and synovitis in rats in a dose-and time-dependent manner: proposed model-specific scoring systems. Osteoarthritis and cartilage. 2016;24:1284-91.
[64] Schuelert N, McDougall JJ. Grading of monosodium iodoacetate-induced osteoarthritis reveals a concentration-dependent sensitization of nociceptors in the knee joint of the rat. Neuroscience letters. 2009;465:184-8.
[65] Combe R, Bramwell S, Field MJ. The monosodium iodoacetate model of osteoarthritis: a model of chronic nociceptive pain in rats? Neuroscience letters. 2004;370:236-40.
[66] van Osch GJ, van der Kraan PM, Blankevoort L, Huiskes R, van den Berg WB. Relation of ligament damage with site specific cartilage loss and osteophyte formation in collagenase induced osteoarthritis in mice. 1996.
[67] Botter S, Van Osch G, Waarsing J, Van der Linden J, Verhaar J, Pols H, et al. Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis. Osteoarthritis and cartilage. 2008;16:506-14.
[68] Al-Saffar F, Ganabadi S, Yaakub H, Fakurazi S. Collagenase and sodium iodoacetate-induced experimental osteoarthritis model in Sprague Dawley rats. Asian J Sci Res. 2009;2:167-79.
[69] van der Kraan PM, Vitters E, van Beuningen HM, Van De Putte L, Van den Berg W. Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. Journal of experimental pathology (Oxford, England). 1990;71:19.
[70] Kikuchi T, Sakuta T, Yamaguchi T. Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits. Osteoarthritis and cartilage. 1998;6:177-86.
[71] Adães S, Mendonça M, Santos TN, Castro-Lopes JM, Ferreira-Gomes J, Neto FL. Intra-articular injection of collagenase in the knee of rats as an alternative model to study nociception associated with osteoarthritis. Arthritis research & therapy. 2014;16:R10.
[72] Fernández-Lucas J, Castañeda D, Hormigo D. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technology. 2017;68:91-101.
[73] Potter J, McCluskey R, Weissmann G, Thomas L. THE REMOVAL OF CARTILAGE MATRIX BY PAPAIN: Factors Affecting the Distribution of Crystalline Papain in Vivo. The Journal of experimental medicine. 1960;112:1173-94.
[74] Havdrup T, Henricson A, Telhag H. Papain-induced mitosis of chondrocytes in adult joint cartilage: an experimental study in full-grown rabbits. Acta Orthopaedica Scandinavica. 1982;53:119-24.
[75] Greenawald K, Tsaltas T. Papain Induced Chemical Changes in Adult Rabbit Cartilage Matrix. Proceedings of the Society for Experimental Biology and Medicine. 1964;117:885-8.
[76] Şükür E, Talu C, Akman YE, Çirci E, Öztürkmen Y, Tüzüner T. Comparison of the chondroprotective effect of a novel hydrogel compound and traditional hyaluronate on rat cartilage in a papain-induced osteoarthritis model. Acta orthopaedica et traumatologica turcica. 2016;50:458-63.
[77] Murat N, Karadam B, Ozkal S, Karatosun V, Gidener S. Quantification of papain-induced rat osteoarthritis in relation to time with the Mankin score. Acta Orthop Traumatol Turc. 2007;41:233-7.
[78] Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. The Knee. 2012;19:493-9.
[79] Piskin A, Gulbahar MY, Tomak Y, Gulman B, Hokelek M, Kerimoglu S, et al. Osteoarthritis models after anterior cruciate ligament resection and medial meniscectomy in rats. A histological and immunohistochemical study. Saudi medical journal. 2007;28:1796-802.
[80] McDermott I, Amis A. The consequences of meniscectomy. The Journal of bone and joint surgery British volume. 2006;88:1549-56.
[81] Karahan S, Kincaid SA, Kammermann JR, Wright JC. Evaluation of the rat stifle joint after transection of the cranial cruciate ligament and partial medial meniscectomy. Comparative medicine. 2001;51:504-12.
[82] Ham KD, Loeser RF, Lindgren BR, Carlson CS. Effects of long‐term estrogen replacement therapy on osteoarthritis severity in cynomolgus monkeys. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2002;46:1956-64.
[83] Høegh-Andersen P, Tankó LB, Andersen TL, Lundberg CV, Mo JA, Heegaard A-M, et al. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther. 2004;6:R169.
[84] Ahern B, Parvizi J, Boston R, Schaer T. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis and cartilage. 2009;17:705-13.
[85] Hunziker EB. Biologic repair of articular cartilage: defect models in experimental animals and matrix requirements. Clinical Orthopaedics and Related Research®. 1999;367:S135-S46.
[86] Wei X, Messner K. Maturation‐dependent durability of spontaneous cartilage repair in rabbit knee joint. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 1999;46:539-48.
[87] Breinan HA, Minas T, Hsu H-P, Nehrer S, Sledge CB, Spector M. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. JBJS. 1997;79:1439-51.
[88] Meulenbelt I, Kloppenburg M, Kroon HM, Houwing-Duistermaat JJ, Garnero P, Le Graverand MH, et al. Urinary CTX-II levels are associated with radiographic subtypes of osteoarthritis in hip, knee, hand, and facet joints in subject with familial osteoarthritis at multiple sites: the GARP study. Annals of the rheumatic diseases. 2006;65:360-5.
[89] Hoch JM, Mattacola C, McKeon JM, Howard J, Lattermann C. Serum cartilage oligomeric matrix protein (sCOMP) is elevated in patients with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and cartilage. 2011;19:1396-404.
[90] Roemhildt M, Gardner-Morse M, Rowell C, Beynnon B, Badger G. Gait alterations in rats following attachment of a device and application of altered knee loading. Journal of biomechanics. 2010;43:3227-31.
[91] Piel MJ, Kroin JS, van Wijnen AJ, Kc R, Im H-J. Pain assessment in animal models of osteoarthritis. Gene. 2014;537:184-8.
[92] Reid J, Scott M, Nolan A, Wiseman-Orr L. Pain assessment in animals. In Practice. 2013;35:51-6.
[93] Bufalari A, Adami C, Angeli G, Short C. Pain assessment in animals. Veterinary research communications. 2007;31:55.
[94] Wendler A, Wehling M. The translatability of animal models for clinical development: biomarkers and disease models. Current opinion in pharmacology. 2010;10:601-6.
[95] Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Engineering Part B: Reviews. 2010;16:105-15.
[96] Malda J, de Grauw JC, Benders KE, Kik MJ, van de Lest CH, Creemers LB, et al. Of mice, men and elephants: the relation between articular cartilage thickness and body mass. PloS one. 2013;8.
[97] Chang S, Yasui T, Taketomi S, Matsumoto T, Kim-Kaneyama J, Omiya T, et al. Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability. Osteoarthritis and cartilage. 2016;24:688-97.
[98] Bendele A, Mccomb J, Gould T, Mcabee T, Sennello G, Chlipala E, et al. Animal models of arthritis: relevance to human disease. Toxicologic pathology. 1999;27:134-42.
[99] Ma H-L, Blanchet T, Peluso D, Hopkins B, Morris E, Glasson S. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis and cartilage. 2007;15:695-700.
[100] Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka AS, Little CB. Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis and cartilage. 2008;16:1319-26.
[101] Mak J, Jablonski C, Leonard C, Dunn JF, Raharjo E, Matyas J, et al. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Scientific reports. 2016;6:23076.
[102] Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B, et al. Double‐knockout of ADAMTS‐4 and ADAMTS‐5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2007;56:3670-4.
[103] Ferretti M, Marra KG, Kobayashi K, Defail AJ, Chu CR. Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue engineering. 2006;12:2657-63.
[104] Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nature medicine. 2010;16:1210-4.
[105] Kamisan N, Naveen SV, Ahmad RE, Tunku K. Chondrocyte density, proteoglycan content and gene expressions from native cartilage are species specific and not dependent on cartilage thickness: a comparative analysis between rat, rabbit and goat. BMC veterinary research. 2013;9:62.
[106] Katagiri H, Mendes L, Luyten F. Definition of a critical size osteochondral knee defect and its negative effect on the surrounding articular cartilage in the rat. Osteoarthritis and cartilage. 2017;25:1531-40.
[107] Bolon B, Stolina M, King C, Middleton S, Gasser J, Zack D, et al. Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. BioMed Research International. 2010;2011.
[108] Hu Y, Yang Y, Luo B. Evaluation of destruction in a collagen‑induced arthritis rat model: Bony spur formation. Experimental and therapeutic medicine. 2017;14:2563-7.
[109] Frisbie D, Cross M, McIlwraith C. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Veterinary and comparative orthopaedics and traumatology. 2006;19:142-6.
[110] Wei X, Gao J, Messner K. Maturation‐dependent repair of untreated osteochondral defects in the rabbit knee joint. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials. 1997;34:63-72.
[111] Han C, Chu C, Adachi N, Usas A, Fu F, Huard J, et al. Analysis of rabbit articular cartilage repair after chondrocyte implantation using optical coherence tomography. Osteoarthritis and cartilage. 2003;11:111-21.
[112] Buma P, Pieper JS, van Tienen T, van Susante JL, van der Kraan PM, Veerkamp JH, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects—a study in rabbits. Biomaterials. 2003;24:3255-63.
[113] Chevrier A, Kouao AS, Picard G, Hurtig MB, Buschmann MD. Interspecies comparison of subchondral bone properties important for cartilage repair. Journal of Orthopaedic Research. 2015;33:63-70.
[114] Rudert M. Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissues Organs. 2002;171:229-40.
[115] Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. Journal of orthopaedic surgery and research. 2017;12:39.
[116] Shortkroff S, Barone L, Hsu H-P, Wrenn C, Gagne T, Chi T, et al. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials. 1996;17:147-54.
[117] Cook SD, Patron LP, Salkeld SL, Rueger DC. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. JBJS. 2003;85:116-23.
[118] Feczkó P, Hangody L, Varga J, Bartha L, Diószegi Z, Bodó G, et al. Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2003;19:755-61.
[119] Lee C, Grodzinsky A, Hsu HP, Spector M. Effects of a cultured autologous chondrocyte‐seeded type II collagen scaffold on the healing of a chondral defect in a canine model. Journal of Orthopaedic Research. 2003;21:272-81.
[120] Bouwmeester PS, Kuijer R, Homminga GN, Bulstra SK, Geesink RG. A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post‐surgery. Journal of orthopaedic research. 2002;20:267-73.
[121] Jackson DW, Lalor PA, Aberman HM, Simon TM. Spontaneous repair of full-thickness defects of articular cartilage in a goat model: a preliminary study. JBJS. 2001;83:53.
[122] Brehm W, Aklin B, Yamashita T, Rieser F, Trüb T, Jakob R, et al. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis and cartilage. 2006;14:1214-26.
[123] Brittberg M, Sjögren-Jansson E, Lindahl A, Peterson L. Influence of fibrin sealant (Tisseel®) on osteochondral defect repair in the rabbit knee. Biomaterials. 1997;18:235-42.
[124] Patil S, Steklov N, Song L, Bae WC, D'Lima DD. Comparative biomechanical analysis of human and caprine knee articular cartilage. The Knee. 2014;21:119-25.
[125] Butnariu-Ephrat M, Robinson D, Mendes DG, Halperin N, Nevo Z. Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clinical Orthopaedics and Related Research®. 1996;330:234-43.
[126] Nam HY, Karunanithi P, Loo WCP, Naveen SV, Chen HC, Hussin P, et al. The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis research & therapy. 2013;15:R129.
[127] Levingstone TJ, Ramesh A, Brady RT, Brama PA, Kearney C, Gleeson JP, et al. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials. 2016;87:69-81.
[128] Nixon A, Fortier L, Goodrich L, Ducharme N. Arthroscopic reattachment of osteochondritis dissecans lesions using resorbable polydioxanone pins. Equine veterinary journal. 2004;36:376-83.
[129] Koch TG, Betts DH. Stem cell therapy for joint problems using the horse as a clinically relevant animal model. Expert opinion on biological therapy. 2007;7:1621-6.
[130] Malda J, Benders K, Klein T, De Grauw J, Kik M, Hutmacher D, et al. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthritis and cartilage. 2012;20:1147-51.
[131] Strauss EJ, Goodrich LR, Chen C-T, Hidaka C, Nixon AJ. Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. The American journal of sports medicine. 2005;33:1647-53.
[132] Gotterbarm T, Breusch S, Schneider U, Jung M. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Laboratory animals. 2008;42:71-82.
[133] Litzke L-F, Wagner E, Baumgaertner W, Hetzel U, Josimović-Alasević O, Libera J. Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Annals of biomedical engineering. 2004;32:57-69.
[134] Murray R, Vedi S, Birch H, Lakhani K, Goodship A. Subchondral bone thickness, hardness and remodelling are influenced by short‐term exercise in a site‐specific manner. Journal of Orthopaedic Research. 2001;19:1035-42.
[135] Chiang H, Kuo TF, Tsai CC, Lin MC, She BR, Huang YY, et al. Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. Journal of Orthopaedic Research. 2005;23:584-93.
[136] Bourget JL, Mathes DW, Nielsen GP, Randolph MA, Tanabe YN, Ferrara VR, et al. Tolerance to Musculoskeletal Allografts With Transient Lymphocyte Chimerism in Miniature Swine1. Transplantation. 2001;71:851-6.
[137] Pan Y, Li Z, Xie T, Chu CR. Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. Journal of biomedical optics. 2003;8:648-55.
[138] Tomaszewski R, Wiktor Ł, Gap A. Enhancement of cartilage repair through the addition of growth plate chondrocytes in an immature skeleton animal model. Journal of orthopaedic surgery and research. 2019;14:260.
[139] Harman BD, Weeden SH, Lichota DK, Brindley GW. Osteochondral autograft transplantation in the porcine knee. The American journal of sports medicine. 2006;34:913-8.
[140] Newman E, Turner A, Wark J. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995;16:S277-S84.
[141] Swindle MM, Smith AC, Hepburn BJ. Swine as models in experimental surgery. Journal of Investigative Surgery. 1988;1:65-79.
[142] Ha C-W, Park Y-B, Chung J-Y, Park Y-G. Cartilage repair using composites of human umbilical cord blood‐derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Translational Medicine. 2015;4:1044-51.
[143] Christensen BB, Foldager CB, Olesen ML, Vingtoft L, Rölfing JHD, Ringgaard S, et al. Experimental articular cartilage repair in the Göttingen minipig: the influence of multiple defects per knee. Journal of experimental orthopaedics. 2015;2:13.
[144] Benazzo F, Cadossi M, Cavani F, Fini M, Giavaresi G, Setti S, et al. Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. Journal of orthopaedic research. 2008;26:631-42.
[145] Jelic M, Pecina M, Haspl M, Kos J, Taylor K, Maticic D, et al. Regeneration of articular cartilage chondral defects by osteogenic protein-1 (bone morphogenetic protein-7) in sheep. Growth factors. 2001;19:101-13.
[146] Lu Y, Hayashi K, Hecht P, Fanton GS, Thabit III G, Cooley A, et al. The effect of monopolar radiofrequency energy on partial-thickness defects of articular cartilage. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2000;16:527-36.
[147] Burks RT, Greis PE, Arnoczky SP, Scher C. The use of a single osteochondral autograft plug in the treatment of a large osteochondral lesion in the femoral condyle: an experimental study in sheep. The American journal of sports medicine. 2006;34:247-55.
[148] Orth P, Meyer HL, Goebel L, Eldracher M, Ong MF, Cucchiarini M, et al. Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. Journal of Orthopaedic Research. 2013;31:1772-9.
[149] Manunta AF, Zedde P, Pilicchi S, Rocca S, Pool RR, Dattena M, et al. The use of embryonic cells in the treatment of osteochondral defects of the knee: an ovine in vivo study. Joints. 2016;4:070-9.
[150] Zorzi AR, Amstalden EM, Plepis AMG, Martins VC, Ferretti M, Antonioli E, et al. Effect of human adipose tissue mesenchymal stem cells on the regeneration of ovine articular cartilage. International journal of molecular sciences. 2015;16:26813-31.
[151] Hopper N, Wardale J, Brooks R, Power J, Rushton N, Henson F. Peripheral blood mononuclear cells enhance cartilage repair in in vivo osteochondral defect model. PLoS One. 2015;10.
[152] Murray RC, Branch MV, Dyson SJ, Parkin TD, Goodship AE. How does exercise intensity and type affect equine distal tarsal subchondral bone thickness? Journal of Applied Physiology. 2007;102:2194-200.
[153] Vasara A, Hyttinen M, Pulliainen O, Lammi M, Jurvelin J, Peterson L, et al. Immature porcine knee cartilage lesions show good healing with or without autologous chondrocyte transplantation. Osteoarthritis and cartilage. 2006;14:1066-74.
[154] Tang C, Jin C, Li X, Li J, Du X, Yan C, et al. Evaluation of an Autologous Bone Mesenchymal Stem Cell-Derived Extracellular Matrix Scaffold in a Rabbit and Minipig Model of Cartilage Repair. Medical science monitor: international medical journal of experimental and clinical research. 2019;25:7342.
[155] Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. Journal of Orthopaedic Research. 2007;25:913-25.
[156] Thysen S, Luyten FP, Lories RJ. Targets, models and challenges in osteoarthritis research. Disease models & mechanisms. 2015;8:17-30.

Downloads

Published

2020-12-14

How to Cite

Zarini, D. ., Mojaverrostami, S. ., Kianian, F. ., Entekhabi, E. ., & Haghbin Nazarpak, M. (2020). A review on in-vivo animal models for articular cartilage regeneration: osteoarthritis defects. The Journal of Applied Tissue Engineering, 7(1), 1–27. https://doi.org/10.22034/JATE.2020.39

Issue

Section

Review Articels