Evolving Trends in Bioactive Glass Coatings: A Systematic Review of Global Research and Applications
DOI:
https://doi.org/10.22034/JATE.2025.152Keywords:
Bioactive glass coating, Bioceramic implants, Biomedical application, Surface modification, Advanced coating techniques.Abstract
Bioactive glass (BG) coatings are essential in advancing regenerative medicine, enhancing interactions with biological tissues and improving the performance of medical and dental implants. Since their discovery in the late 1960s, BGs have evolved to meet the demands of biomedical applications, particularly in orthopedics and dentistry. This systematic review examines the development and recent advancements in BG coatings, focusing on innovative techniques that address mechanical and biological challenges. Utilizing VOSviewer software, the review conducts a bibliometric analysis to map research networks and identify influential studies shaping BG technology. It highlights promising research directions, emphasizing nanotechnology and composite materials. These innovations aim to overcome existing limitations of BGs, unlocking new possibilities for bone regeneration and other therapeutic areas. The review underscores significant progress in BG coatings and points to future breakthroughs that could redefine their role in modern medicine, making them vital for next-generation medical treatments.
References
V. Cannillo, L. Pawlowski, S. Fiorilli, E. Bernardo, Editorial: Bioceramics and/or Bioactive Glass-Based Composites, Front Mater 8 (2021). https://doi.org/10.3389/fmats.2021.738931.
H.R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, G.E. Stan, J.M.F. Ferreira, Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering, Materials 11 (2018). https://doi.org/10.3390/ma11122530.
N. Al-Harbi, H. Mohammed, Y. Al-Hadeethi, A.S. Bakry, A. Umar, M.A. Hussein, M.A. Abbassy, K.G. Vaidya, G. Al Berakdar, E.M. Mkawi, Silica-based bioactive glasses and their applications in hard tissue regeneration: A review, Pharmaceuticals 14 (2021) 75.
L.L. Hench, The story of Bioglass®, J Mater Sci Mater Med 17 (2006) 967–978.
C. Micheletti, P.H.S. Gomes-Ferreira, T. Casagrande, P.N. Lisboa-Filho, R. Okamoto, K. Grandfield, From tissue retrieval to electron tomography: nanoscale characterization of the interface between bone and bioactive glass, J R Soc Interface 18 (2021) 20210181. https://doi.org/10.1098/rsif.2021.0181.
J.R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomater 9 (2013) 4457–4486. https://doi.org/10.1016/J.ACTBIO.2012.08.023.
D. Bellucci, M. Bianchi, G. Graziani, A. Gambardella, M. Berni, A. Russo, V. Cannillo, Pulsed Electron Deposition of nanostructured bioactive glass coatings for biomedical applications, Ceram Int 43 (2017) 15862–15867. https://doi.org/10.1016/J.CERAMINT.2017.08.159.
R. Sergi, D. Bellucci, V. Cannillo, A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives, Coatings 10 (2020). https://doi.org/10.3390/coatings10080757.
S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, A.P. Tomsia, Bioactive glass coatings for orthopedic metallic implants, J Eur Ceram Soc 23 (2003) 2921–2930. https://doi.org/10.1016/S0955-2219(03)00303-0.
J. anne N. Oliver, Y. Su, X. Lu, P.H. Kuo, J. Du, D. Zhu, Bioactive glass coatings on metallic implants for biomedical applications, Bioact Mater 4 (2019) 261–270. https://doi.org/10.1016/J.BIOACTMAT.2019.09.002.
D. Ege, K. Zheng, A.R. Boccaccini, Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions, ACS Appl Bio Mater 5 (2022) 3608–3622. https://doi.org/10.1021/acsabm.2c00384.
S. Thanigaivel, A.K. Priya, D. Balakrishnan, K. Dutta, S. Rajendran, M. Soto-Moscoso, Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications, Biochem Eng J 187 (2022) 108522. https://doi.org/10.1016/j.bej.2022.108522.
M.N. Rahaman, D.E. Day, B. Sonny Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Bioactive glass in tissue engineering, Acta Biomater 7 (2011) 2355–2373. https://doi.org/10.1016/J.ACTBIO.2011.03.016.
V. Miguez-Pacheco, L.L. Hench, A.R. Boccaccini, Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues, Acta Biomater 13 (2015) 1–15. https://doi.org/10.1016/J.ACTBIO.2014.11.004.
Q. Fu, M.N. Rahaman, H. Fu, X. Liu, Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation, J Biomed Mater Res A 95A (2010) 164–171. https://doi.org/10.1002/jbm.a.32824.
G. Zhang, P. Zhao, L. Lin, L. Qin, Z. Huan, S. Leeflang, A.A. Zadpoor, J. Zhou, L. Wu, Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study, Ann Transl Med 9 (2021) 39–39. https://doi.org/10.21037/atm-20-3829.
C. Pontremoli, M. Pagani, L. Maddalena, F. Carosio, C. Vitale-Brovarone, S. Fiorilli, Polyelectrolyte-Coated Mesoporous Bioactive Glasses via Layer-by-Layer Deposition for Sustained Co-Delivery of Therapeutic Ions and Drugs, Pharmaceutics 13 (2021) 1952. https://doi.org/10.3390/pharmaceutics13111952.
Q. Dai, Q. Li, H. Gao, L. Yao, Z. Lin, D. Li, S. Zhu, C. Liu, Z. Yang, G. Wang, D. Chen, X. Chen, X. Cao, 3D printing of Cu-doped bioactive glass composite scaffolds promotes bone regeneration through activating the HIF-1α and TNF-α pathway of hUVECs, Biomater Sci 9 (2021) 5519–5532. https://doi.org/10.1039/D1BM00870F.
J. Liang, X. Lu, X. Zheng, Y.R. Li, X. Geng, K. Sun, H. Cai, Q. Jia, H.B. Jiang, K. Liu, Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies, Front Bioeng Biotechnol 11 (2023). https://doi.org/10.3389/fbioe.2023.1269223.
M.E. Taygun, A.R. Boccaccini, 10 - Nanoscaled bioactive glass particles and nanofibers, in: H. Ylänen (Ed.), Bioactive Glasses (Second Edition), Second Edition, Woodhead Publishing, 2018: pp. 235–283. https://doi.org/https://doi.org/10.1016/B978-0-08-100936-9.00012-5.
J.E. Gough, A.R. Boccaccini, Tissue Engineering Using Ceramics and Polymers, Elsevier Ltd, 2007. https://doi.org/10.1533/9781845693817.
S. Heise, L.R. Rivera, A.R. Boccaccini, Bioactive glass containing coatings by electrophoretic deposition: Development and applications, Elsevier, 2018. https://doi.org/10.1016/B978-0-08-102196-5.00001-X.
L.L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society 74 (1991) 1487–1510. https://doi.org/10.4172/2090-5025.1000e108.
L.L. Hench, Bioceramics, Journal of the American Ceramic Society 81 (1998) 1705 – 1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x.
R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates., Clinical Orthopaedics and Related Research (1976-2007) 395 (2002) 81–98. https://doi.org/10.1097/00003086-200202000-00009.
H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater 7 (2011) 2769–2781. https://doi.org/https://doi.org/10.1016/j.actbio.2011.03.019.
S. V Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials 31 (2010) 1465–1485. https://doi.org/https://doi.org/10.1016/j.biomaterials.2009.11.050.
R.Z. LeGeros, Calcium Phosphate-Based Osteoinductive Materials, Chem Rev 108 (2008) 4742–4753. https://doi.org/10.1021/cr800427g.
R.A.A. Muzzarelli, Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone, Carbohydr Polym 76 (2009) 167–182. https://doi.org/https://doi.org/10.1016/j.carbpol.2008.11.002.
J. Hasan, R.J. Crawford, E.P. Ivanova, Antibacterial surfaces: the quest for a new generation of biomaterials, Trends Biotechnol 31 (2013) 295–304. https://doi.org/10.1016/j.tibtech.2013.01.017.
L. Zhao, P.K. Chu, Y. Zhang, Z. Wu, Antibacterial coatings on titanium implants, J Biomed Mater Res B Appl Biomater 91B (2009) 470–480. https://doi.org/https://doi.org/10.1002/jbm.b.31463.
E. Boanini, M. Gazzano, A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomater 6 (2010) 1882–1894. https://doi.org/https://doi.org/10.1016/j.actbio.2009.12.041.
J. Jeong, J.H. Kim, J.H. Shim, N.S. Hwang, C.Y. Heo, Bioactive calcium phosphate materials and applications in bone regeneration, Biomater Res 23 (2019) 4. https://doi.org/10.1186/s40824-018-0149-3.
A.R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, Electrophoretic deposition of biomaterials, J R Soc Interface 7 (2010). https://doi.org/10.1098/rsif.2010.0156.focus.
J. Ryu, S.H. Ku, H. Lee, C.B. Park, Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization, Adv Funct Mater 20 (2010) 2132–2139. https://doi.org/https://doi.org/10.1002/adfm.200902347.
R. Agarwal, A.J. García, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair, Adv Drug Deliv Rev 94 (2015) 53–62. https://doi.org/10.1016/j.addr.2015.03.013.
J. Schrooten, J.A. Helsen, Adhesion of bioactive glass coating to Ti6Al4V oral implant, Biomaterials 21 (2000) 1461–1469. https://doi.org/10.1016/S0142-9612(00)00027-2.
S. SAFAEE, A. VALANEZHAD, M. NESABI, S. JAFARNIA, H. SANO, S. SHAHABI, S. ABE, I. WATANABE, Fabrication of bioactive glass coating on pure titanium by sol-dip method: Dental applications, Dent Mater J 40 (2021) 2020–323. https://doi.org/10.4012/dmj.2020-323.
M. Nesabi, A. Valanezhad, S. Safaee, T. Odatsu, S. Abe, I. Watanabe, A novel multi-structural reinforced treatment on Ti implant utilizing a combination of alkali solution and bioactive glass sol, J Mech Behav Biomed Mater 124 (2021) 104837. https://doi.org/10.1016/j.jmbbm.2021.104837.
W. Liang, X. Wu, Y. Dong, R. Shao, X. Chen, P. Zhou, F. Xu, In vivo behavior of bioactive glass-based composites in animal models for bone regeneration, Biomater Sci 9 (2021) 1924–1944. https://doi.org/10.1039/D0BM01663B.
J.C. Moses, B.B. Mandal, Mesoporous Silk-Bioactive Glass Nanocomposites as Drug Eluting Multifunctional Conformal Coatings for Improving Osseointegration and Bactericidal Properties of Metal Implants, ACS Appl Mater Interfaces 14 (2022) 14961–14980. https://doi.org/10.1021/acsami.2c00093.
R. Borges, A.M. Pelosine, A.C.S. de Souza, J. Machado, G.Z. Justo, L.F. Gamarra, J. Marchi, Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer Treatment, Materials 15 (2022) 9082. https://doi.org/10.3390/ma15249082.
V. Krishnan, T.L.-J. of advanced pharmaceutical, undefined 2013, Bioglass: A novel biocompatible innovation, (n.d.). https://journals.lww.com/japtr/fulltext/2013/04020/Bioglass__A_novel_biocompatible_innovation.3.aspx.
H.E. Skallevold, D. Rokaya, Z. Khurshid, M.S. Zafar, Bioactive Glass Applications in Dentistry, Int J Mol Sci 20 (2019) 5960. https://doi.org/10.3390/ijms20235960.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Journal of Applied Tissue Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.